Circuitos R.C.
Se considera un circuito RC a todo aquel circuito compuesto por: de una parte, una asociación de resistencias, y de otra, un único condensador (se incluyen los casos en que el hay varios capacitores -condensadores- que se pueden reducir a uno equivalente), puede tener también fuentes tanto dependientes como independientes.
Un circuito RC de primer orden está compuesto de un resistor y un condensador y es la forma más simple de un circuito RC. Los circuitos RC pueden usarse para filtrar una señal, al bloquear ciertas frecuencias y dejar pasar otras. Los filtros RC más comunes son el filtro paso alto, filtro paso bajo, filtro paso banda, y el filtro elimina banda.
Entre las características de los circuitos RC está la propiedad de
ser sistemas lineales e invariantes en el tiempo; reciben el nombre de
filtros debido a que capaces de filtrar señales eléctricas de
acuerdo a su frecuencia.
En la configuración de paso bajo la señal de salida del circuito se
coge en bornes del condensador, estando este conectado en serie con la
resistencia. En cambio en la configuración de paso alto la tensión de
salida es la caída de tensión en la resistencia.
Circuitos biestables:
es un multivibrador capaz de permanecer en uno de dos estados posibles durante un tiempo indefinido en ausencia de perturbaciones.Esta característica es ampliamente utilizada en electrónica digital para memorizar información. El paso de un estado a otro se realiza variando sus entradas. Dependiendo del tipo de dichas entradas los biestables se dividen en:
Asíncronos: solamente tienen entradas de control. El más empleado es el biestable rc
Síncronos: además de las entradas de control posee una entrada de sincronismo o de reloj.
La entrada de sincronismo puede ser activada por nivel (alto o bajo) o por flanco (de subida o de bajada). Dentro de los biestables síncronos activados por nivel están los tipos RS y D, y dentro de los activos por flancos los tipos JK, T y D
Según la lógica de disparo, se pueden dar los siguientes tipos:
- Biestables R-S
- Biestable D
- Biestable J-K
- Biestable T
Biestable R S:Dispositivo de almacenamiento temporal de 2 estados (alto y bajo), cuyas entradas principales permiten al ser activadas:
R: el borrado (reset en inglés), puesta a 0 ó nivel bajo de la salida.
S: el grabado (set en inglés), puesta a 1 ó nivel alto de la salida
Biestable D
El flip-flop D resulta muy útil cuando se necesita almacenar un único bit de datos (1 o 0). Si se añade un inversor a un flip-flop S-R obtenemos un flip-flop D básico. El funcionamiento de un dispositivo activado por el flanco negativo es, por supuesto, idéntico, excepto que el disparo tiene lugar en el flanco de bajada del impulso del reloj.
Biestable JK
Es versátil y es uno de los tipos de flip-flop más usados. Su funcionamiento es idéntico al del flip-flop S-R en las condiciones SET, RESET y de permanencia de estado. La diferencia está en que el flip-flop J-K no tiene condiciones no válidas como ocurre en el S-R.
Biestable T (Toggle)
Dispositivo de almacenamiento temporal de 2 estados (alto y bajo). El biestable T cambia de estado ("toggle" en inglés) cada vez que la entrada de sincronismo o de reloj se dispara mientras la entrada T está a nivel alto. Si la entrada T está a nivel bajo, el biestable retiene el nivel previo.
Circuito RLC
es un circuito lineal que contiene una resistencia eléctrica, una bobina (inductancia) y un condensador.
Existen dos tipos de circuitos RLC, en serie o en paralelo, según la interconexión de los tres tipos de componentes. El comportamiento de un circuito RLC se describe generalmente por una ecuación diferencial de segundo orden (en donde los circuitos RC o RL se comportan como circuitos de primer orden).
Con ayuda de un generador de señales, es posible inyectar en el circuito oscilaciones y observar en algunos casos el fenómeno de resonancia, caracterizado por un aumento de la corriente (ya que la señal de entrada elegida corresponde a la pulsación propia del circuito, calculable a partir de la ecuación diferencial que lo rige).
Circuito sometido a un escalón de tensión
Si un circuito RLC en serie es sometido a un escalón de tensión E {\displaystyle E\,} , la ley de las mallas impone la relación:
E = u C + u L + u R = u C + L d i d t + R t i {\displaystyle E=u_{C}+u_{L}+u_{R}=u_{C}+L{\frac {di}{dt}}+R_{t}i}
Introduciendo la relación característica de un condensador:
i C = i = C d u C d t {\displaystyle i_{C}=i=C{\frac {du_{C}}{dt}}}
Se obtiene la ecuación diferencial de segundo orden:
E = u C + L C d 2 u C d t 2 + R t C d u C d t {\displaystyle E=u_{C}+LC{\frac {d^{2}u_{C}}{dt^{2}}}+R_{t}C{\frac {du_{C}}{dt}}}
Donde:
- E es la fuerza electromotriz de un generador, en Voltios (V);
- uC es la tensión en los bornes de un condensador, en Voltios (V);
- L es la inductancia de la bobina, en Henrios (H);
- i es la intensidad de corriente eléctrica en el circuito, en Amperios (A);
- q es la carga eléctrica del condensador, en Coulombs (C);
- C es la capacidad eléctrica del condensador, en Faradios (F);
- Rt es la resistencia total del circuito, en Ohmios (Ω);
- t es el tiempo en segundos (s)